

Content

- I. Introduction
 - Power of Korea, General Statistics
- II. Government NT Policy and NT Statistics
- III. Government Associated NT Institutions and Programs
 - Research Society, Infrastructure Network,
 Policy Center, R&D Programs, Nano Korea
- IV. Government Associated Association and Programs for NT Commercialization
- V. Network Globalization and Brain Mobility
- VI. Research Activities

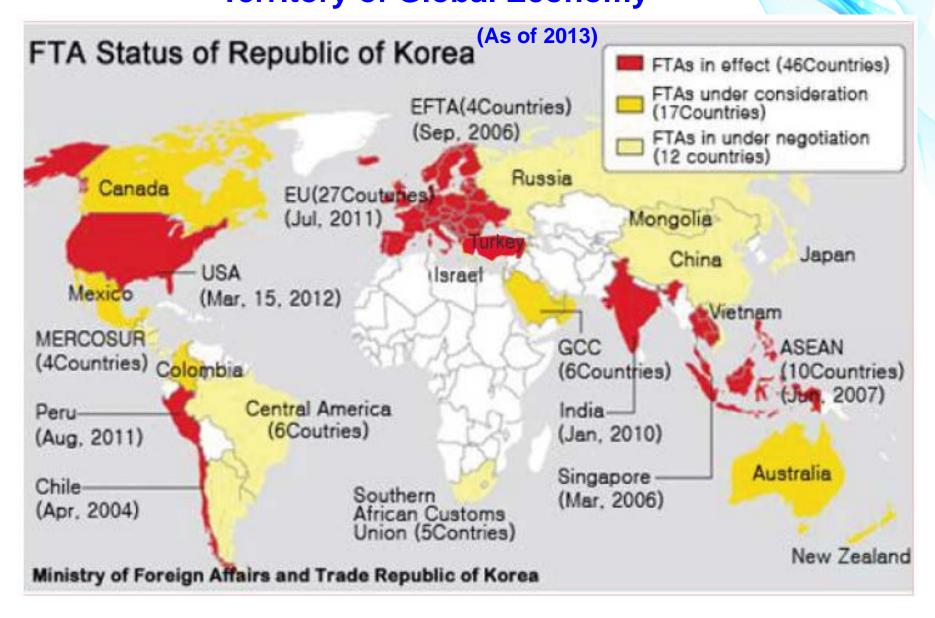
Ι

Miracle on Han River

Overnight transformation from the ashes of the Korean War to a wealthy developed country

The Power of South Korea

PyeongChang will become the first Asian city outside of Japan to host the Winter Olympics in 2018.



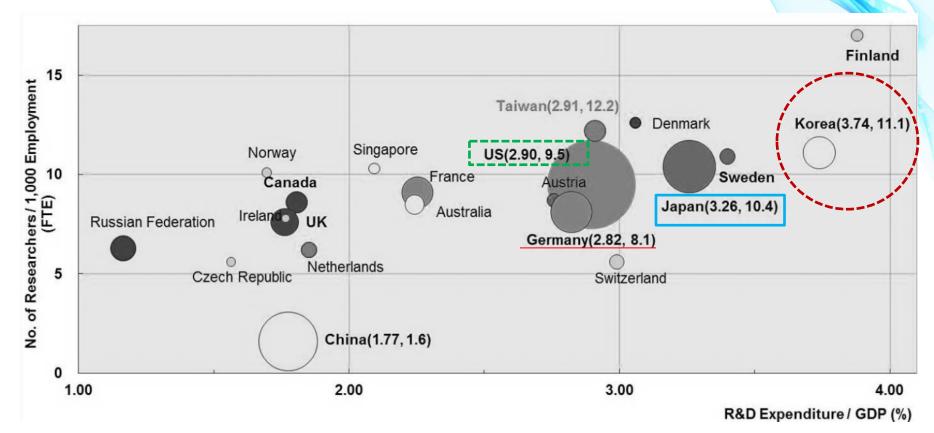
Engineering Manpower

The Power of South Korea Territory of Global Economy

The Most Innovative in the World

BLOOMBERG RANGKINGS in 2014

Rank	Country	Total Score
1	South Korea	92.10
2	Sweden	90.80
3	United States	90.69
4	Japan	90.41
5	Germany	88.23
6	Denmark	86.97
7	Singapore	86.07
8	Switzerland	86.02
9	Finland	85.86
10	Taiwan	83.52


Engineering Manpower and R&D Spending

Rank	Country	No. of Graduates in Engineering (Per Year)
1	Russia	417,343
2	Japan	195,670
3	United States	189,532
4	S. Korea	179,143
5	France	94,737
6	Mexico	59,117
7	Italy	56,428
8	Germany	55,998
9	Turkey	53,311
10	UK	52,798

Rank	Country	Exports (Unit : B\$)
1	United Stat es	\$ 405.3
2	China	\$ 296.8
3	Japan	\$ 160.3
4	Germany	\$ 69.5
5	S. Korea	\$ 55.8
6	France	\$ 42.2
7	UK	\$ 38.4
8	India	\$ 36.1
9	Canada	\$ 24.3
10	Russia	\$ 23.8

Source: UNESCO Report-Engineering, 2010

Comparison of the World's R&D Expenditure and Personnel

Source: Main Science and Technology Indicators. OECD, 2012/1.

Note: 1. The circular areas stand for the amount of R&D expenditure which is divided by purchasing power parity (PPP).

- 2. The numbers beside each country name = (R&D expenditure/GDP (%), number of researchers per 1000 employment (FTE))
- 3. The data is of the year 2010 except the US one, which is of (2009, 2007).

National Nanotechnology Initiative Funding

in U.S.

NSF FY 2015 Budget Request: \$412

Agency	FY 2001 Actual	FY 2002 Actual	FY 2003 Actual	FY 2004 Actual	FY 2005 Actual	FY 2006 Actual	FY 2007 Actual	FY 2008 Actual	FY 2009 Actual	FY 2009 ARRA	FY 2010 Actual	FY 2011 Actual	FY 2012 Actual	FY 2014 Request
National Institutes of Health (DHHS) ^a	40	59	78	106	165	192	215	305	343	73	457	409	456	461
National Science Foundation	150	204	221	256	335	360	389	409	409	101	429	485	466	431
Department of Energy ^b	88	89	134	202	208	231	236	245	333	293	374	346	314	370
Department of Defense ^c	125	224	220	291	352	424	450	460	459		440	425	426	217
National Institute of Standards and Technology (DOC)	33	77	64	77	79	78	88	86	93	43	115	96	95	102
National Aeronautics and Space Administration	22	35	36	47	45	50	20	17	14		20	17	19	18
Environmental Protection Agency	5	6	5	5	7	5	8	12	12		18	17	18	17
Other Agencies	1	3	2	5	9	13	19	22	40		62	32	64	87
TOTAL	464	697	760	989	1,200	1,351	1,425	1,554	1,702	511	1913	1,845	1,857	1,767

Source: NNI website. http://www.nano.gov/. Figures for FY2012 and FY2014 from *The National Nanotechnology Initiative*: Supplement to the President's FY2014 Budget, National Science and Technology Council, Executive Office of the President, May 2013.

- In 2000, President Clinton launched the NNI to coordinate federal R&D efforts and promote U.S. competitiveness in NT.
- ➤ U.S. Congress has approved ~ \$18.5B (FY 2001 ~ FY 2012) for NT R&D.
- ➤ U.S. private sector NT R&D is now estimated to be twice that of public funding. The private sector's efforts are focused on translating fundamental knowledge and prototypes into commercial products; developing new applications incorporating nanoscale materials; and developing technologies, methods, and systems for commercial-scale manufacturing.

Source: Congressional Research Service, Nanotechnology: A Policy Primer, December 2013

Number of U.S. Granted Utility Patents* & Rank

									IIIIIII COO COO COO COO COO COO COO COO	CCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
Country	2007		2008		2009)	2010	0	2011		
Country	grants	rank	grants	rank	grants	rank	grants	rank	grants	rank	
US	79,526	1	77,502	1	82,382	1	107,792	1	108,626	1	
Japan	33,354	2	33,682	2	35,501	2	44,813	2	46,139	2	
South	6,295	4	7,548	4	8,762	4	11,671	4	12,262	3	
Korea											
Germany	9,051	3	8,914	3	9,000	3	12,363	3	11,920	4	

^{*}Design Patents Excluded

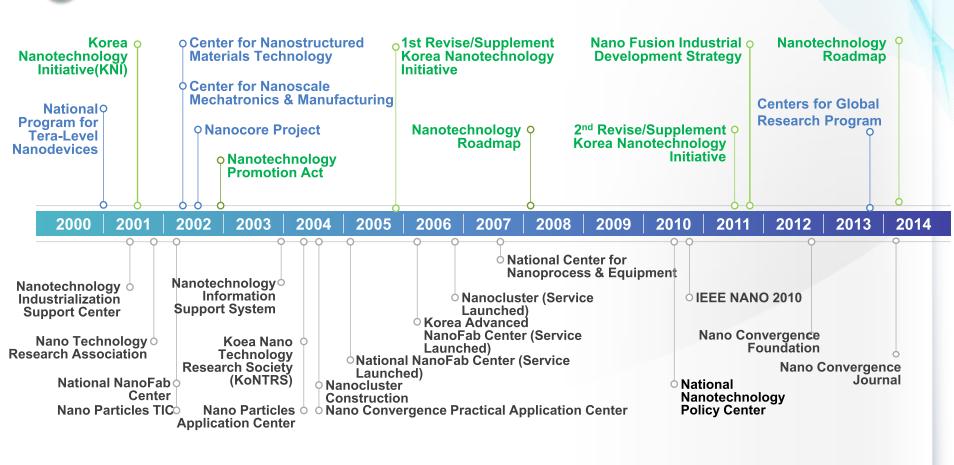
Source: Indicators of Science and Technology. National Science Council, 2012.

Nanotechnology Policy in Korea

 Established in accordance with the Nanotechnology Development Promotion Law (enacted in Dec. 2002)

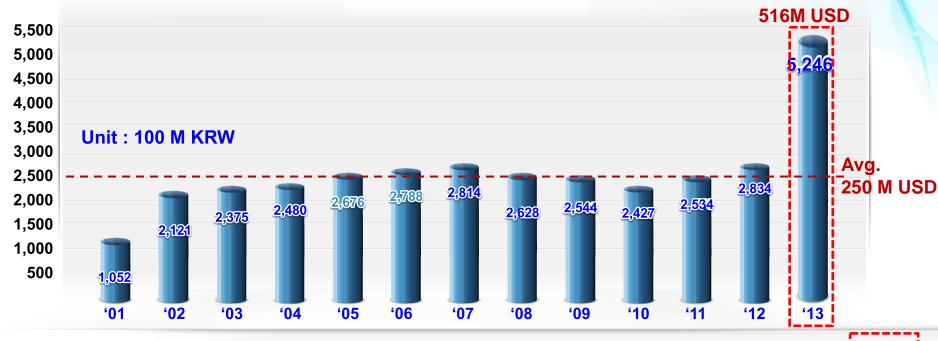
 Developed and implemented by the National Comprehensive Development Plan for the Nanotechnology (NCDPN)
 Need for systematic & comprehensive plan in national level in response to the preoccupation of advanced countries including the US and EU in the field of nanotechnology

• The 3rd phase NCDPN was established in 2011
Select 30 future core technologies in 5 fields for development


of nanotechnology to meet the demands of future society

Milestones of Nanotechnology Initiatives and Policy

KNI: National Comprehensive Development Plan on Nanotechnology (NCDPN)



Korean Government Funding on NT

For 14 years (Korea) : Total 3,452 Billion KRW(≃ 3.4B USD)

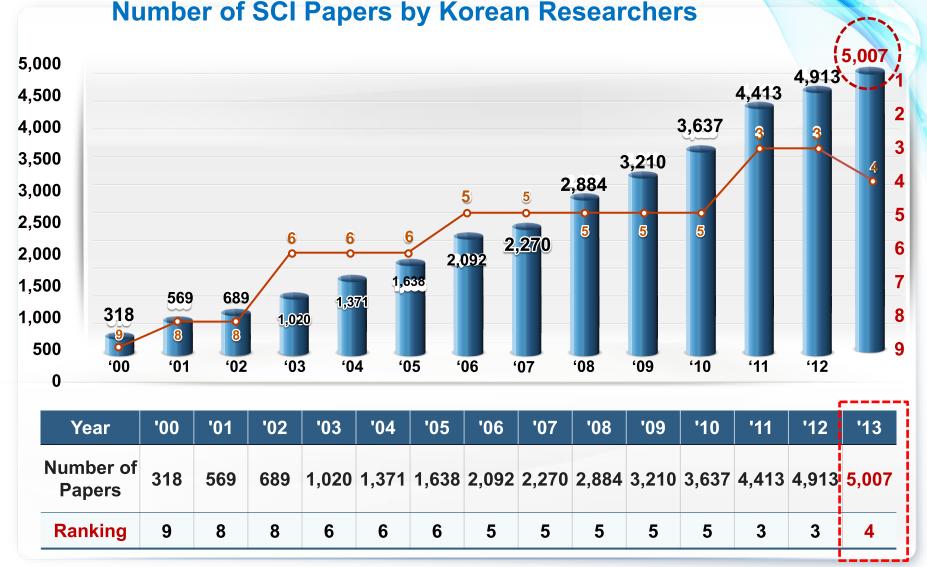
[For 12 years (US) : Total ≃18.5B USD (FY 2001 ~ FY 2012)]

		'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	'12	'13
R&D	955	1,589	1,644	1,631	1,700	1,938	2,045	1,963	2,304	2,075	2,178	2,623	4,692
Infra	30	456	626	702	840	688	610	526	110	224	225	181	210
HR	67	76	105	147	136	162	159	139	130	128	131	30	344
Total	1,052	2,121	2,375	2,480	2,676	2,788	2,814	2,628	2,544	2,427	2,534	2,834	5,246

Nanotechnology Related Patents

Number of Patent Filings (Korean IP Office)

Year	,00	'01	'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	`12
Number of Patent Filings	573	712	969	1,471	1,892	2,478	2,462	3,242	4,031	3,815	3,933	2,336	363
Accumulated Total	-	1,285	2,254	3,725	5,617	8,095	10,557	13,799	17,830	21,645	25,578	27,914	28,277


Number of Patent Filings (US IP Office)

Year	`00	'01	'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	`12	`13
Number of Registered Patents	10	26	29	54	73	58	81	100	158	181	333	428	475	494
Ranking	9	6	5	4	4	5	5	4	3	4	3	3	3	3

Source: USPTO Data Base of Wips, January 2014

П

Nanotechnology Related Publication

In 2013 : China (20,743), US (14,850), India (5,453), Korea (5,007), Germany (4,201), Japan (4,090) Source: *SCIE Data Base of Thomson*, February 2014

Selected Nanotechnology Programs

MSIP (Ministry of Science, ICT, and Future Planning)

Nano Material & Technology Development Program

- Fundamental research on Nanomaterials, Nano-devices, Nano-process, Nano-tools, etc.
- Program Duration: 5 7 years
- Budget: \$0.5 1.0M/year

Pioneer Research Center

- High-risk and high-profit convergence technology including Nano
- Program Duration: 6 years
- Budget: \$1.0M/year

MSIP (Ministry of Science, ICT and Future Planning)

Global Frontier Program

- Innovative technology which can overcome the limits of existing technologies
- Program Duration: 9 years
- Budget: ~ \$15M/year

Nano Convergence 2020

- Commercialization of NT-based convergence technologies and creation of new industrial fields
- Program Duration: 2-9 years
- Budget: up to several M\$/year (need-base)

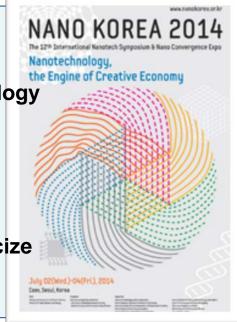

Korea Nanotechnology Research Society (KoNTRS)

☐ Purpose of Establishment

- Promote joint projects, networking, and information exchanges between corporations and scholarly researchers in Nanotechnology
- Improve mutual collaboration among members and contribute NT policy, research,
 scholarly activities, and early industrialization

☐ Major Activities

- Korea Nanotechnology Initiative and NT Road Map
- Nano Korea Symposium (Since 2002)
- Domestic & Global Networking and Collaboration
- Nano Convergence (New journal started in 2014 with Springer
- NT Education Programs including e-Nano School
- Knowledge Sharing with Public



Korea Nanotechnology Research Society

☐ Nano Korea Symposium

- Description
 - The largest symposium on the nanoscale science and technology in Korea
 - Meaningful occasion to confirm major research results and up-to-date research trends in world
 - Opportunities for enterprises and research institutes to publicize commercialization of their technologies

Nano Korea 2012

Public Program

Korea Nanotechnology Research Society

The 12th International Nanotech Symposium & Nano-Convergence Expo in Korea

NANO KOREA 2014

July 2-4, 2014, Coex, Seoul, Korea

You are cordially invited to participate in the 12th International Nanotech Symposium & Exhibition, NANO KOREA 2014, to be held in Coex, Seoul, Korea, July 2-4, 2014. NANO KOREA is the biggest nanotech festival in Korea providing a perfect opportunity to get the most up-to-date information and recent trends in the field of, or related to, the nanoscale science and technology. This year, the Symposium will be more exciting and forward-looking with its technical sessions covering the key pending issues and cutting edge technologies as well as the core topical areas in nano science and technology. We hope to see you in Seoul in 2014.

Important Dates

Abstract Submission Due: March 10, 2014

Notification of Acceptance: March 31, 2014 Pre-registration Due: May 30, 2014 Full Paper Submission: July 21, 2014

Organizing Committee

Organizing Co-chairs:

Dr. Sang-Hee Suh

(President of Korea Nano Technology Research Society)

Dr. Hee-Gook Lee

(Chairman of Nano Technology Research Association)

Symposium Chair:

Prof. Haiwon Lee

(Executive Vice-president of Korea Nano Technology Research Society, Hanyang University) Program Chair: Dr. Chul-Jin Choi

(Korea Institute of Materials Science)

Program Vice-chairs: Prof. Kyoungwan Park

(University of Seoul) Prof. Wan Soo Yun (SungKyunKwan University)

Topics and Scope

- Nano Electronics & Circuits
- Nanophotonics & Plasmonics
- Nanomaterials & Processings
- Nano Fabrication & Measurement
- Nanobiotechnology & Nanomedicine
- Nano Safety & ELS
- Nano Carbon Technology
- Industrialization of Nano Convergence Technology

Call For Abstra

NANO KOREA 2014 Symposium Secretari

Fax: 82-2-573-6208

#301 Seshin Bldg., 66-2 Umyeon-dong, Seocho-gu, Seoul 137-140, Korea E-mait symposium@nanokorea.or.kr Tet: 62-2-579-6207

National Nanotechnology Policy Center (NNPC)

☐ Purpose of Establishment and Vision

- Help Korea to become a world-class NT country through NT information collection and analysis as well as national NT policy NT policy and strategy development
- Advance into a world-class research institute exclusively for nano policies

☐ Major Functions

- Support for the national NT policy and strategy development
- R&D and planning for nano policies and strategies
- research and analysis on NT policies and strategies of major countries
- Collection and analysis of NT information and service
- collection and analysis of NT policy information
- establishment and operation of a nano portal, along with precision of high quality NT information
- Support for international cooperation and network establishment

National Nanotechnology Policy Center

Expansion of Workshop

NBIC2 Korea Workshop on Oct 15~16, 2012

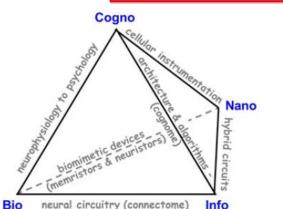
Discussions on future direction of convergence technology & policy

NBIC study 2001-2002

2001-2010: Reactive convergence

Coincidental, based on adhoc collaborations of partners or individual fields for predetermined goals

NBIC/CKTS study 2011-2012


2011-2020: Proactive convergence

Includes decision analysis in the convergence approach

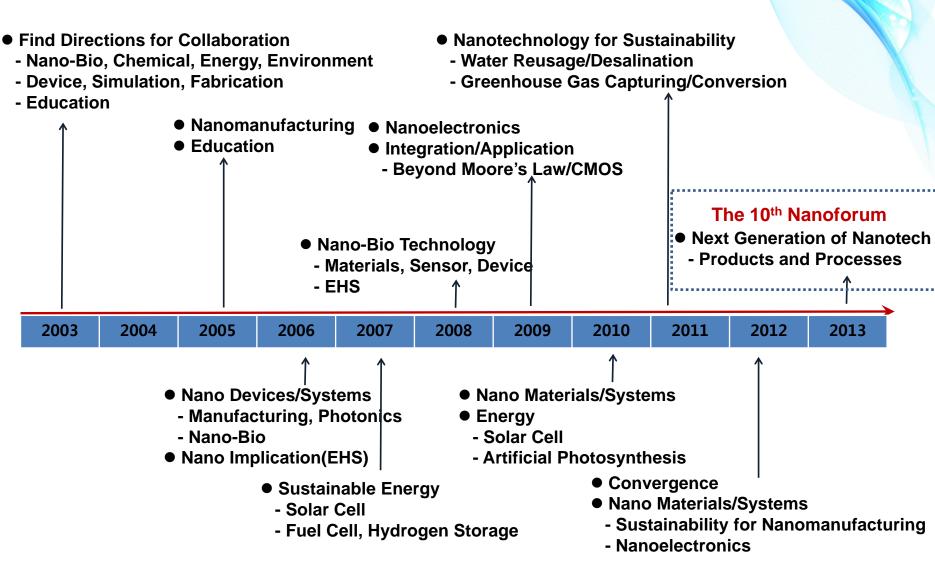
Organizations for convergence

After ~2020: Systemic convergence

Holistic; driven by higher-level purposes; this includes convergence organizations

October 15~16, 2012
KIST Seoul Korea

"Transforming Tools of Emerging and Converging Technologies for Societal Benefit-Beyond Nano-Bio-Info-Cognitive Technologies"



WTEC Study on CKTS: Beyond Convergence of NBIC Technologies, 2013.07

National Nanotechnology Policy Center

Evolution of Themes of Korea-US Nanoforum

From 1st~10th Korea-US Nano Forums

☐ Purpose and Roles of KION

Major Activities

•Providing effective support for domestic nanotechnology research and development via close collaboration amongst domestic Nano-infrastructure.

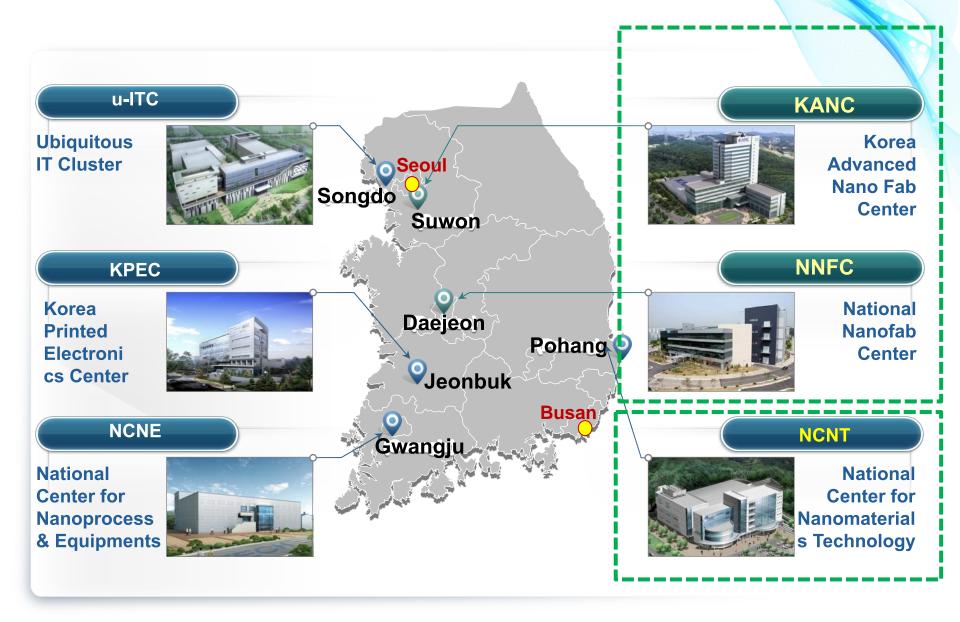
Role

- Constructing a mutual cooperation system for preemptive response to the nanotechnology paradigm shifts and consumer demands
- Policy development for increased nano-infrastructure efficacy, research support, manpower training, collaboration projects
- -Providing and sharing integrated information on attained technology, equipment, service, and usage, etc.
- ·Mutual PR for nano-infrastructure

Korea Infrastructure Organization for Nanotechnology (KION)

Purpose and Roles of KION

Major Activities


•Providing effective support for domestic nanotechnology research and development via close collaboration amongst domestic Nano-infrastructure.

Role

- Constructing a mutual cooperation system for preemptive response to the nanotechnology paradigm shifts and consumer demands
- Policy development for increased nano-infrastructure efficacy, research support, manpower training, collaboration projects
- -Providing and sharing integrated information on attained technology, equipment, service, and usage, etc.
- Mutual PR for nano-infrastructure

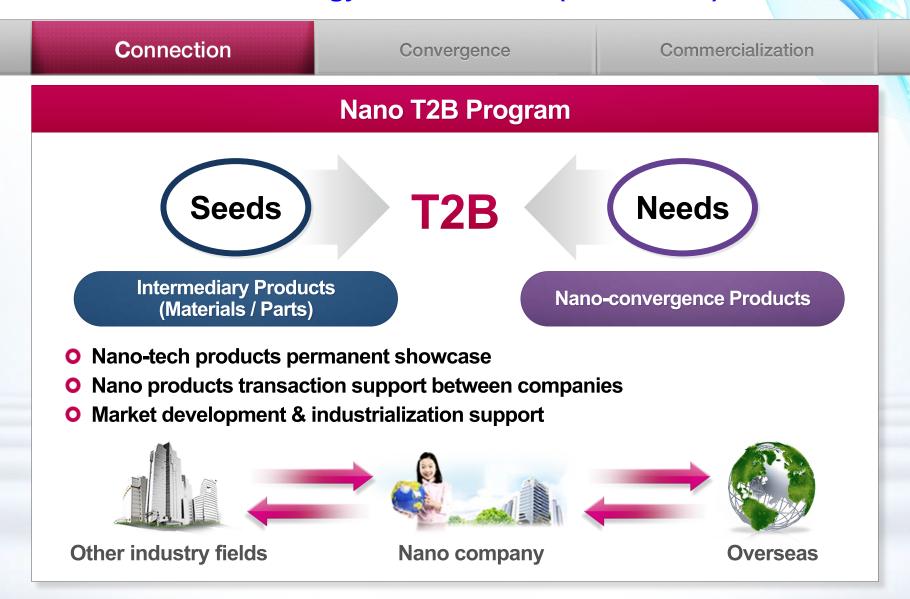
Members of KION, National NanoFab Facilities

Nano Technology Research Association

- ☐ Purpose of Establishment and Mission
- Help private sector for commercialization of research outcomes in nanotechnology
- Networking of government, academia, research institutes and private sector

How to boost up fast commercialization of research outcomes in nanotechnology successfully?

"Strengthening industrial competitiveness of existing major industries"



Convergence Commercialization of NT and other industry fields

Nano Technology Research Association

Strategy for Each Issue (Connection)

Nano Technology Research Association

Strategy for Each Issue (Convergence)

Connection Convergence Commercialization **Test & Evaluation Program for NT Application** demand(Spec.)/adopt Supply **Demand Suitability verification** Companies Companies of nano product application (NT) (Others) sample/performance **Prototyping support for Testing & evaluation support** commercialization verification of NT products of NT products (specific performance requirements)

Nano-Convergence Foundation (NCF)

☐ Background and Vision

- Delayed/Slow Commercialization of Research Outcomes
- Missing links between research steps
- Poor linkage between research programs
- No systematic flow of R&D information between related sectors
- Absence of systems promoting commercialization of research outcomes
- Creation of new markets & industry through commercialization of nanotechnology

Commercialization

- ☐ Finding breakthrough technologies
- □ Developing core nanotechnology
- ☐ Commercialization of research outcomes
- □ Bringing-up nanotechnology corporations including start-ups

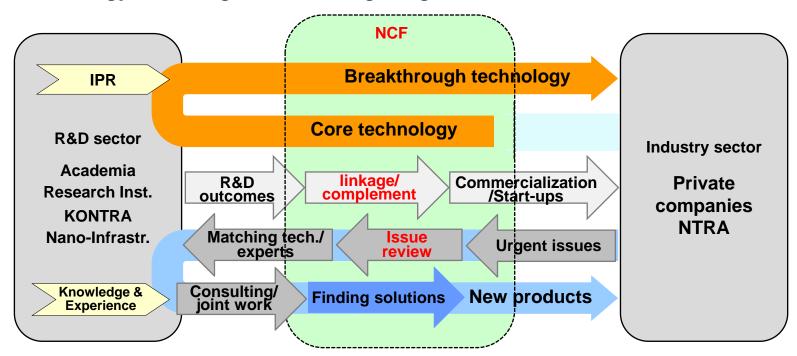
Integrated platform

- Mgt. of overall process of R&D
- ☐ Focusing on big convergence tech.
- □ Sharing outcomes/information among sectors of private and public
- ☐ Inducing participation of private sector (VC)

Nano-Convergence Foundation

Target Areas of Nano-Convergence 2020 Program

Two major convergence technology areas, close to markets or having urgent industrial needs, will be primarily promoted together with cross-cutting technologies.


Tech. Area	Technology-area to be Strategically Promoted
NT-IT	 Next generation devices (Post-CMOS) Nanotechnology-based flexible devices
NT-ET	 High-efficiency energy conversion technology High-performance treatment of water/waste
Cross-cutting technologies	Nanomaterials and nanoscale process/ measurement/ instruments required for nanomanufacturing leading to high-rate and massive production with low cost

Nano-Convergence Foundation

Routes for Commercialization of Nanotechnology

- (1) Finding promising breakthrough technologies leading to big industries and financial support for their development (ex. post-CMOS)
- (2) Commercialization of research outcomes (linkage and complement) "Needs-matching Commercialization Program"
- (3) Provision of solutions for industrial needs (technology-matching & consulting) "Technology-matching Issue-Solving Program"

Nano-Convergence Foundation

Launched Projects of Nano-Convergence 2020 Program (Examples)

Organic solar cells for outdoor applications

High-yield light extraction (OLED)

Air purification for indoor applications

Thermal insulation & smart windows (Films)

Heat spreaders (high power LED lamps)

Ceramic inks for printed porcelains

Science Diplomacy and Global Partnership

- Informing foreign policy objectives with scientific advice (science in diplomacy)
- Facilitating international science cooperation (diplomacy for science)
- Using science cooperation to improve international relations between countries (science for diplomacy)

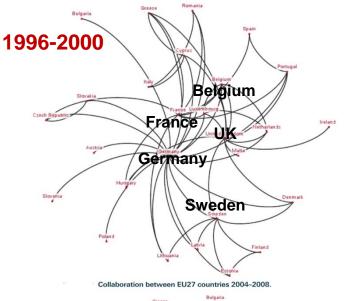
'Science diplomacy and science and technology cooperation . . . is one of our most effective ways of influencing and assisting other nations and creating real bridges between the United States and counterparts.'

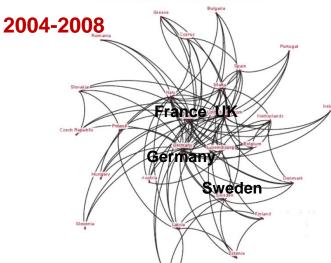
Hillary Clinton, US Secretary of State -

Academic Mobility

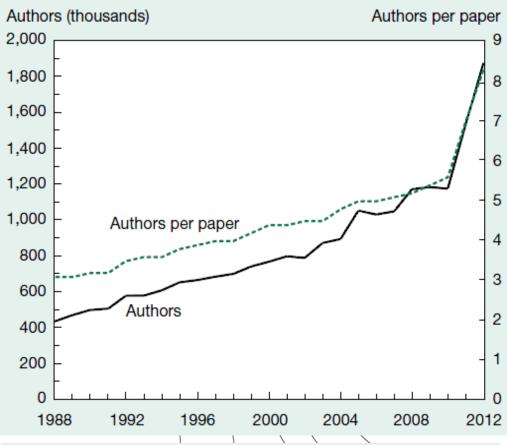
The Lausanne campus of EPFL.
Switzerland is the country with the world highest proportion of foreign researchers

Academic mobility refers to students and teachers in higher education moving to another institution inside or outside their own country to study or teach for a limited time.


Academic mobility suffers from cultural, socioeconomical and academic barriers. Mobile students are usually divided into two groups: free-movers are students that travel entirely on their own initiative, while program students use exchange programs at department, faculty, institution or national level (such as Erasmus and Fulbright).


The Erasmus Programme (European Community Action Scheme for the Mobility of University Students) is a European Union (EU) student exchange programme established in 1987. About 3 million students have benefited from Erasmus grants.

V


Network of Global Collaboration

Collaboration between EU

Number of authors and authors per paper for U.S. academic institutions: 1988–2012

NOTES: Article counts are from the set of journals covered by the Science Citation Index (SCI) and Social Sciences Citation Index (SSCI).

Source: (1)Royal Society: Knowledge, Networks and Nations: Global Scientific Collaboration in the 21st Century, 2011 (2)National Science Board: Science and Engineering Indicators 2014

Asia in the World

- Population : 3.2 billion
 GDP : 14 trillion dollars
- Korea China Japan
 ASEAN 10 countries
 India Australia New Zealand

EU

- Population : 0.5 billion
- GDP: 18.8 trillion dollars
- UK Germany France etc.
 27 countries

ASIA

NAFTA

- Population : 0.4 billion
- GDP: 16.8 trillion dollars
- USA Canada Mexico

CAMPUS Asia Programs

CAMPUS Asia (Collective Action for Mobility Program of University Students in Asia) is a student exchange program funded by the governments of Korea, China and Japan to support universities in extending their global reach.

The objective of this CAMPUS Asia Program is to establish a higher educational network among universities in Japan, China, and Korea to improve the competitiveness in the international academic market and to nurture the development of future leaders who can succeed in the global community

Example: (2) TKT Campus Asia Consortium

V PIRE Program

PIRE (Partnership for International Research and Education) is Partnerships for International Research and Education (PIRE) is an NSF-wide program that supports international activities across all NSF supported disciplines. The primary goal of PIRE is to support high quality projects in which advances in research and education could not occur without international collaboration. PIRE seeks to catalyze a higher level of international engagement in the U.S. science and engineering community.

International partnerships are essential to addressing critical science and engineering problems. In the global context, U.S. researchers and educators must be able to operate effectively in teams with partners from different nations and cultural backgrounds. PIRE promotes excellence in science and engineering through international collaboration and facilitates development of a diverse, globally-engaged, U.S. science and engineering workforce.

Nanorealization Flagship Project (Signature Initiatives) Nanosensor fior IoT(Internet of Things)

umer Electronic

Assembly of Nanoparticles in Multiscales and Multidimensions

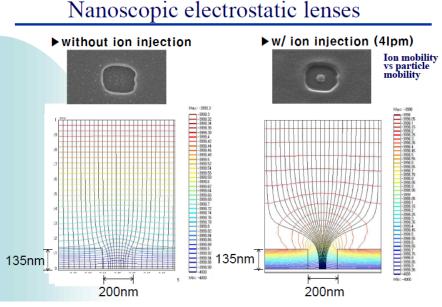
(Multiscale Architecturng):

Platform for Convergence Technology

Mansoo Choi

Global Frontier Center for Multiscale Energy Systems

Plasmonic solar cell utilizes multiscale metal nanoparticle pattern enable physically thin but optically thick cells to maximize light trapping

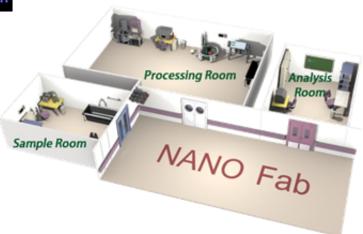

Optical path length enhancement

Multiscale plasmonic solar cells

Multiscale plasmonic solar cells

August 1 de Solar d

Atwater et al., Nature Materials (2010)

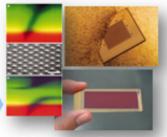


Simulation Platform as a Virtual Fab

Trying to mimic the procedure of the experimental works in the FAB of real space,

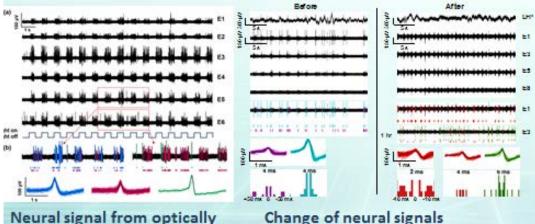
As closely as possible!

Selected Research Areas Goal of KIST Nano Virtual Fab


Web-based Platform for Materials Design by Computer Simulation and Materials Informatics

Computational Materials Science

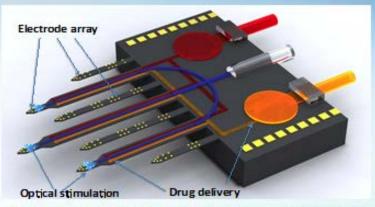
Materials Informatics

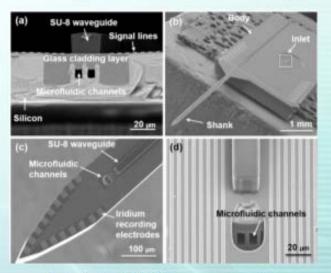

Materials Design

Open DB on Materials

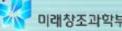
- Multiscale Simulation Environment
 - Virtual Fab for Everyone (QM, MD, MC, Meso, FEM)
- Material Informatics Environment
 - Database + Data Warehouse
 - Data Analysis Algorithm

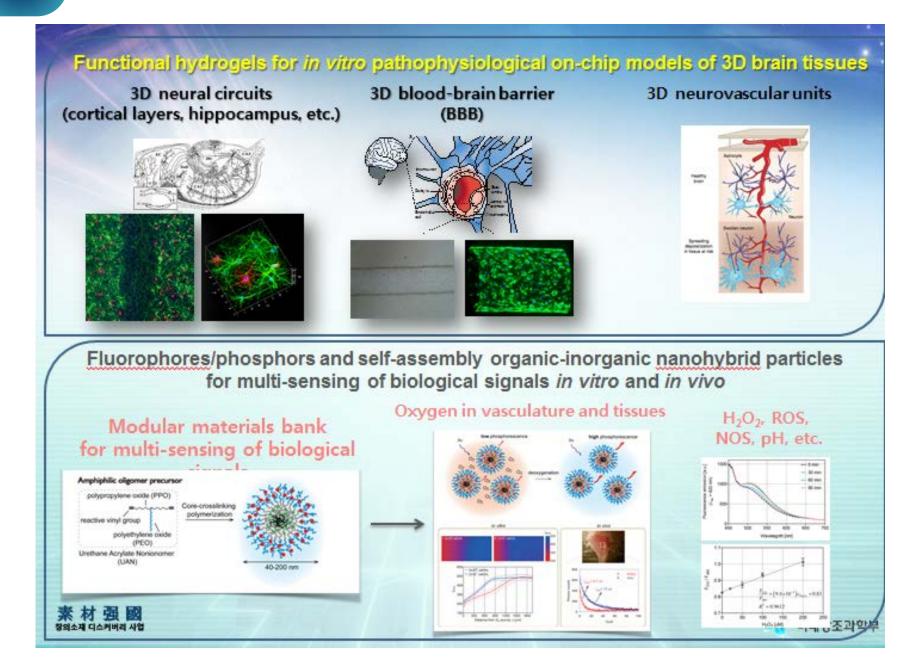
MEMS Neural Probe for Brain Interface


- MEMS neural probe for optical stimulation, drug delivery and recording of neural signal
- Integrated with optical waveguide, microfluidic channel and electrode array
- Small size for reducing brain tissue damage (100 μm x 40 μm x 7 mm)
- Essential system for studying neural circuits of brain disease by stimulating and recording at different brain regions simultaneously


(before & after drug infusion)

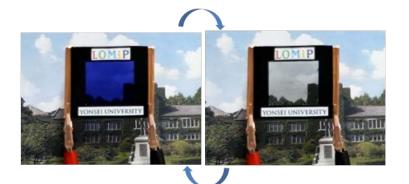
Neural signal from optically stimulated neurons


素材强國



Schematic diagram of the multifunctional probe

Fabricated MEMS neural probe




Eunkyoung Kim (Yonsei University)

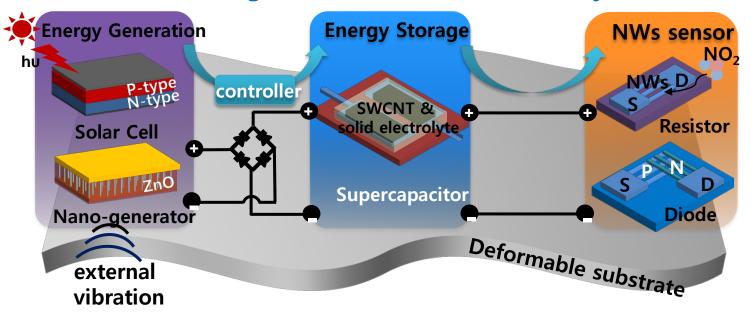
Electrochemical Switching of Transmission in Thin Films with A Long Memory Effect

ETS

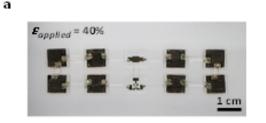
ElectroTransmittance
Switching

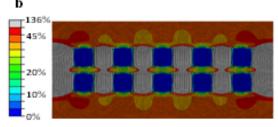
Research Objectives

Metallic ETS


- Enhance stability & contrast of ETS
- Design of multi-color electrochromic materials
- Fabrication of flexible & foldable ETS
 - A long memory effect for an energy saving and low-power consumption ETS
- Enhance electrochemical stability of mirrors
- Optimize device conditions for faster switching speed
- Fabrication of multi-mode ETS
- Enhance bistability for an energy saving and low-power consumption ETS

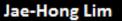
VI

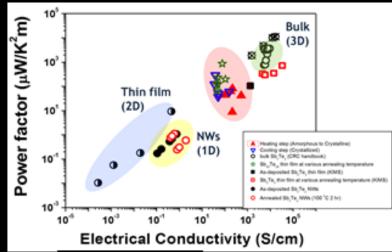

Selected Research Areas

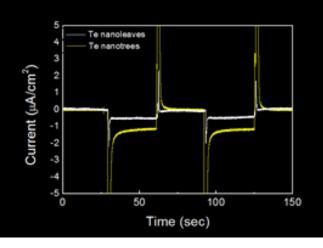

Stretchable electronics with integrated energy generation and storage devices

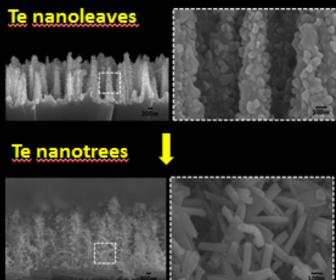
- Jeong Sook Ha (Korea University)

Stretchable array of LEDs & strain distribution Stretchable micro-supercapacitor array




→ Stable electrochemical performance upon repeated stretching upto 40%


Electrodeposition of Semiconductor Materials


Improved thermoelectric property by nano-phase formation

Improved photoelectrochemical property by nano-structuring

